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Coloring night vision imagery for depth perception
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Depth perception for night vision (NV) imagery could largely improve scene comprehension. We present
a novel scheme to give fused multi-band NV imagery smoothly natural color appearance as well as depth
sense from color. Our approach is based on simulating color cues by varying saturation values of each
object in the color NV image, in correspondence with the ratio between the infrared and low-light-level
sensor outputs which in practice is the depth feature for same materials. We render the NV image segment-
by-segment by taking advantage of image segmentation, dominant color transfer, saturation variation, and
image fusion. Experiments have shown that the proposed scheme can achieve satisfying results.
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Night vision (NV) technology enables human beings to
operate at night. Infrared (IR) imaging and low-light-
level (LLL) imaging are two technologies in NV field,
which display either emitted IR radiation or reflected
LLL light, and thus provide complementary information
of the inspected scene[1,2]. However, the images obtained
through these NV imaging systems (or their gray-scale
fused representations) are monochromatic and always
lack the sense of depth due to their unordinary imaging
mechanism. These hinder observers from interpreting
the scene well on situational awareness and target detec-
tion.

To improve the visual perception on NV imagery, most
work has focused on displaying them in color, such as
“color space mapping” technology[3−6], which maps mul-
tiple spectral bands of imagery into a three-dimensional
(3D) color space like RGB or HSV, and “natural color
night vision” technology[7−13], which may give the NV
imagery a natural color appearance by transferring the
characteristics of natural daylight color imagery to the
NV imagery based on a color transfer method. Experi-
ments have shown that the “natural color night vision”
technology can get a better result than “color space
mapping” on visual perception. Though these tech-
niques could give color appearance to NV imagery, very
few of them consider the depth perception for NV im-
agery. Furthermore, Zheng’s “natural color night vision”
method[13] even weakened the depth perception for NV
imagery by rendering it segment-by-segment, since the
color transfer procedure employed a set of very different
daylight color images from the NV image on structure,
although this method can produce colored NV images
which appear more like realistic daylight imagery than
previous methods. Obviously, beyond natural color ap-
pearance, the depth perception for NV imagery could
largely improve scene comprehension, which could help
in tasks such as understanding the spatial layout of a
scene, finding walkable areas in a scene, detecting ob-
jects, etc.

Enhancing depth sense for NV imagery is a challenging
problem, since it refers to numerous visual cues for depth
perception and human beings combine these cues to un-
derstand the 3D structure of the world[14]. The reason

why NV imagery lacks the depth sense is that there are
not sufficient clear depth cues on it. Enhancing details of
NV imagery by extending gray range or contrast between
different gray levels can generate an indirect benefit on
depth perception, since it also makes depth cues such as
texture variations and gradients become clear. In fact,
it is depth cues but not details that give the observers
direct and reliable depth sense on imagery. Therefore,
instead of making the existing cues clearer, we consider
adding extra cues on the NV imagery for depth percep-
tion improvement, which is consistent with the existing
ones. Particularly, regarding color NV imagery, it is pos-
sible to enhance the depth sense by adding color cues
on the chromatic channels, which can express useful and
important depth information that is absent in the orig-
inal monochromatic NV image. Notice that color cues
are not equal to color or natural color appearance, they
are the variety of color contrasts in distance based on the
natural color appearance.

Human beings use numerous visual cues to perceive
depth. Such cues are typically classified into binocular
cues that require input from both eyes and monocular
cues that require the input from just one eye. For sin-
gle monocular images (most NV images are monocular),
depth is judged only from some of monocular cues, such
as texture variations and gradients, occlusion, known ob-
ject size, defocus, color, etc[15]. Among those, color cues
are only in color image and the other cues are achromatic
that both in color image and gray-scale image.

Color cues (also known as aerial perspective cues) will
change due to light scattering by the atmosphere, objects
that are a great distance away have lower color satura-
tion and appear hazier[16]. The foreground has high color
saturation, while the background has low color satura-
tion. Observers could perceive objects differing only in
their color saturation with a background appearing to
be at different depths. Color cues are widely used by
artists to express space in painting. Unfortunately, im-
ages obtained through the NV imaging systems always
lack of the depth cues, either color cues or achromatic
cues, since they are monochromatic and with low con-
trast, blurry details, and narrow gray range. It is even
worse for a gray-scale fused representation.
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We present a novel depth-coloring method in this let-
ter. Our approach is based on simulating color cues
by varying saturation values of each object in color NV
image, in correspondence with the ratio between the IR
and LLL sensor outputs. In practice the ratio is the
depth feature for same materials (see Fig. 1). We render
the NV image segment-by-segment by taking advantage
of image segmentation, dominant color transfer, satura-
tion variation, and image fusion. Dominant color is the
mean values of hue and saturation of object in daylight.
A look-up-table (LUT) is employed to store dominant
colors and reference depth features, which are grouped
by their sense contents such as thermal targets, green
plants, earth/roads, buildings, sky, etc. Our approach
gives NV imagery smoothly natural color appearance as
well as sense of depth, and thus improve the situational
awareness and target detection.

Our method is schematically shown in Fig. 2. The
major points for this method are as follows. 1) The NV
image is rendered segment-by-segment. A mean-shift
segmentation[17] is applied on the false color image to
obtain the image segments by its color properties (corre-
sponding to its scene contents). 2) Depth feature of each
segment is obtained by computing the ratio between the
average output intensities of IR and LLL sensors (i.e.,
the ratio between the mean values of R channel and
G channel on each false color image segment in RGB
color space), since it is reflected by the low-frequency
information in the sensor outputs. 3) The color transfer
procedure is to replace the values of hue and saturation
of every segment with those of corresponding dominant
colors, and the values of luminance are replaced by gray-
scale fused image. Dominant color is the mean values
of hue and saturation of object in daylight. A set of
natural color images have been analyzed so that a se-
quence of dominant colors can be computed. 4) In order
to simulate the color cues for depth perception, the sat-
uration values of each segment vary proportionally with
the ratio between its depth feature and reference depth
feature. The reference depth feature is the depth feature
for a known object in middle distance (about 40 − 60
m), which has been computed from a set of multi-band
NV images. 5) As color source properties, dominant
colors and reference depth features are stored in a LUT
and grouped by their sense contents. 6) The mapping
between gray-scale segments and dominant colors can

Fig. 1. Two false color images formed by assigning IR image
to R channel, LLL image to G channel, and zero value to B
channel. The ratio between the IR and LLL sensor outputs
approximately reflects the depth relationships for same ma-
terials. Regarding the same kind plants, near ones appear
redder (higher color saturation) than the distant ones (i.e.,
the ratio is higher).

be done automatically by a pattern recognition process
based on texture and radiation/reflection similarity mea-
sure, which is still under development. Thereby the
pattern recognition portion of this algorithm is carried
out manually in the following experiments in this letter.

Mean shift segmentation[17] is applied on the false
color image to obtain image segments. Mean shift is a
non-parametric feature space analysis technique and one
of the most statistic methods for image segmentation,
which actually is an iterative procedure for locating sta-
tionary points of a density function given discrete data
sampled from that function. Mean shift segmentation
contains mean shift filtering procedure and concatena-
tion procedure.

To obtain a meaningful segmentation, the false color
image is pre-transformed from RGB color space to
L∗u∗v∗ color space, in which perceived color differences

Fig. 2. Diagram of the proposed depth-coloring method. The
small circles denote the inputs expected by that procedure.
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correspond to Euclidean distances. In the mean shift fil-
tering procedure, the general iteration expression is
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where x is the center of the current position of the kernel
g(x), yj+1 is the next iteration point, h is the kernel band-
width which is positive, and n is the number of sampling
data. The iteration is stopped when ‖yj+1 − yj‖ < ε.
For image filtering, a multivariate kernel is defined as
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where xs is the spatial part, xr is the range part of a
feature vector, k (x) is the common profile used in both
domains, hs and hr are the employed kernel bandwidths,
p is the dimension of pixels, p =1 for gray-level images
and p =3 for color images, and C is the corresponding
normalization constant. In practice, an Epanechnikov
or a normal kernel always provides satisfactory perfor-
mance.

In the following concatenation procedure, the clusters
are delineated in the joint domain by grouping together
all convergence points which are closer than hs in the
spatial domain and hr in the range domain. In order
to compute the depth feature of each segment, the mean
values of each channel in L∗u∗v∗ color space L̄, Ū , and V̄ ,
are computed with regard to the mean shift filtered false
color image first, and then transformed to RGB color
space to get R̄ and Ḡ (B channel should always be zero
in this algorithm), where R̄ and Ḡ are the average output
intensities of IR and LLL sensors. Depth feature of the
ith segment Di is defined as

Di = R̄i

(
Ḡi

)−1
. (3)

In order to simulate the color cues for depth perception,
the saturation value of the ith segment Si is changed after
the dominant color transfer procedure to a new satura-
tion value S∗

i ,

S∗
i ∝ K−1Si, (4)

K = Di (Drefi
)−1

, (5)

where Drefi is the reference depth feature corresponding
to Di and is stored in LUT. If K ≈ 1, the scene content
of this segment is in a middle distance (about 40 − 60
m) like the reference scene, it should have the same sat-
uration as the reference in order to appear at the middle
ground in terms of visual perception. If K < 1, the
scene content of this segment is in the background, it
should have a low color saturation, and the fewer this
value is, the lower the saturation is, and the further away
to the observers it appears to be. If K > 1, the scene
content of this segment is in the foreground, it should
have a high color saturation, and the greater this value
is, the higher the saturation is, and the nearer to the ob-
servers it appears to be. In practice, S∗ is proportional to
KS or K−1S depending on NV imaging condition, such

as induced band range and direction of shadow, which
should be determined before using the scheme under a
new imaging condition.

In our depth-coloring method, hues and saturations are
replaced by those of corresponding dominant colors, and
the saturations vary corresponding to the ratios between
depth features and reference depth features. Dominant
colors and reference depth features are grouped by their
sense contents, as can be seen from Table 1.

Table 1. LUT for Dominant Colors (H,S) and
Reference Depth Features (R̄/Ḡ)

Sense Content H S R̄/Ḡ

Thermal Targets 0.1667 1.0000 5.556

Green Plants 0.3110 0.4512 1.242

Earth/Roads 0.2669 0.3063 0.616

Buildings/Rocks 0.6389 0.0392 0.852

Sky 0.5333 0.0236 0.682

Others 0.2669 0.3063 1.242

In the follow experiments, the false color images are
formed by assigning IR images to R channel, LLL images
to G channel, and zero value to B channel. Gray-scale
fused images are computed by normal Laplacian pyra-
mid. The segmented images are obtained with the mean
shift segmentation algorithm by employing a normal ker-
nel as k(x) and setting the parameters C, p, hs, and hr

to be 1, 3, 16, and 20, respectively. In the saturation
varying procedure, S∗ is proportional to KS.

We analyzed a pair of IR and LLL NV images taken
outdoors, as shown in Figs. 3(a) and (b). The gray-scale
fused image was computed by normal Laplacian pyra-
mid, as shown in Fig. 3(c). The false color image is
shown in Fig. 3(d). The segmented image with averaged
R channel and G channel (Fig. 3(e)) was obtained based
on mean shift procedure. Dominant color rendered im-
ages without saturation varying and its final result which
was produced by replacing the values of luminance with
gray-scale fused images are shown in Figs. 3(f) and (h).
Dominant color rendered images with a saturation vary-
ing procedure and its final result are shown in Figs. 3(g)
and (i).

From the visual examination of the resultant images, it
can be seen that the rendered images with a saturation
varying procedure yield a stronger depth sense than the
dominant color transfer alone, especially in the spatial
layout of the green plants. Meanwhile, the dominant
color transfer technology gives NV imagery a smoothly
natural color appearance, since the uniform colors filter
the noisy points on image visually. From the compari-
son given in Figs. 4(a) and (b), it is obvious that the
color NV image rendered by Zheng’s method is not as
natural and rich of depth sense as the image product
by our depth-coloring method, since in Zheng’s method
the depth cues are disturbed by the color characteristics
from a set of natural daylight images with very different
structures.

In conclusion, a novel “depth-coloring” method is pre-
sented in this letter. It gives fused multi-band NV im-
agery smoothly natural color appearance as well as depth
sense by rendering it with dominant colors segment-by-
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Fig. 3. (a) IR and (b) LLL NV images; (c) gray-scale fused
image with (a) and (b); (d) false color image by using (a)
and (b); (e) segmented image with averaged R channel and G
channel; (f) colored without saturation varying; (g) colored
with saturation varying; (h) final colored image correspond-
ing to (f) with “V” replaced by (c); (i) final colored image
corresponding to (g) with “V” replaced by (c).

Fig. 4. NV image pair in Fig. 1 rendered by (a) Zheng’s
“natural color night vision” method and (b) the proposed
depth-coloring method.

segment. We add visual cues for depth perception based
on varying saturation values of each object’s dominant
color. Experimental results indicate that the scheme can
achieve satisfying results. We plan to develop a classifier
that can recognize the segments in NV images so that

the mapping between NV segments and color schemes
can be done automatically. The proposed method may
be applied to the single-band NV images based on image
analysis in the future.
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